|
|
|
Given an
Matrix
, the Moore-Penrose generalized Matrix Inverse is a unique
Matrix
which satisfies
| (1) | |||
| (2) | |||
| (3) | |||
| (4) |
| (5) |
| (6) |
If the inverse of
exists, then
| (7) |
| (8) |
| (9) |
See also Least Squares Fitting, Matrix Inverse
References
Ben-Israel, A. and Greville, T. N. E. Generalized Inverses: Theory and Applications. New York: Wiley, 1977.
Lawson, C. and Hanson, R. Solving Least Squares Problems. Englewood Cliffs, NJ: Prentice-Hall, 1974.
Penrose, R. ``A Generalized Inverse for Matrices.'' Proc. Cambridge Phil. Soc. 51, 406-413, 1955.
|
|
|
© 1996-9 Eric W. Weisstein