|
|
|
A Matrix
has an inverse Iff the Determinant
. For a
Matrix
| (1) |
| (2) |
![]() |
(3) |
The inverse of a Product
of Matrices
and
can be expressed
in terms of
and
. Let
| (4) |
| (5) |
| (6) |
| (7) |
| (8) |
| (9) |
See also Matrix, Matrix Addition, Matrix Multiplication, Moore-Penrose Generalized Matrix Inverse, Strassen Formulas
References
Ben-Israel, A. and Greville, T. N. E. Generalized Inverses: Theory and Applications. New York: Wiley, 1977.
Nash, J. C. Compact Numerical Methods for Computers: Linear Algebra
and Function Minimisation, 2nd ed. Bristol, England: Adam Hilger, pp. 24-26, 1990.
Press, W. H.; Flannery, B. P.; Teukolsky, S. A.; and Vetterling, W. T. ``Is Matrix Inversion an
Process?'' §2.11 in
Numerical Recipes in FORTRAN: The Art of Scientific Computing, 2nd ed. Cambridge, England:
Cambridge University Press, pp. 95-98, 1992.
|
|
|
© 1996-9 Eric W. Weisstein