|
|
|
The complex conjugate of a Complex Number
is defined to be
. The complex conjugate
is Distributive over addition,
, since
![\begin{eqnarray*}
{[}(a_1+ib_1)+(a_2+ib_2)]^* &=& [(a_1+a_2)\!+\!i(b_1+b_2)]^*\...
...\
&=& (a_1-ib_1)+(a_2-ib_2)\\
&=& (a_1+ib_1)^*+(a_2+ib_2)^*,
\end{eqnarray*}](c2_760.gif)
|
|
|
|
|
|
|
|
|
|
|
References
Abramowitz, M. and Stegun, C. A. (Eds.).
Handbook of Mathematical Functions with Formulas, Graphs, and Mathematical Tables, 9th printing.
New York: Dover, p. 16, 1972.